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ALMOST CONTACT MANIFOLDS WITH KILLING
STRUCTURES TENSORS. 1II

D. E. BLAIR & D. K. SHOWERS

1. Iatroduction

Almost contact manifolds with Killing structure tensors were defined in [2]
as nearly cosymplectic manifolds, and it was shown normal nearly cosymplectic
manifolds are cosymplectic (see also [4]). In this note we study a nearly
cosymplectic structure (¢, &, 7, g) on a manifold M**** with 7 closed primarily
from the topological viewpoint, and extend some of Gray’s results for nearly
Kahler manifolds {5] to this case. In particular on a compact manifold satisfying
some curvature condition we are able to distinguish between the cosymplectic
and non-cosymplectic cases. In addition, we show that if £ is regular, M***! is
a principal circle bundle §* — M***! — K** over a nearly Kdhler manifold K*”,
and moreover if M®**! has positive g-sectional curvature, then M***! is the
product K#* x §'.

2. Almost contact structures

A (2n + 1)-dimensional C* manifold M?***! is said to have an almost con-
tact structure if there exist on M***! a tensor field ¢ of type (1,1), a vector
field £ and a 1-form 7 satisfying

2 =1, 06 =0,700=0,¢= -1+ &Ry,
Moreover, there exists for such a structure a Riemannian metric g such that
77(X) = g(‘f) X) k] g(@Xa @Y) = g(X’ Y) - 7](X)7](Y) ’

where X and Y are vector fields on M***! (see e.g., [14]). Now define on
M7t R an almost complex structure J by

](X, fdit) = (¢X — s, n(X)%) :

where f is a C= function on M***! x R, [15]. If this almost complex structure
is integrable, we say that the almost contact structure is #ormal ; the condition
for normality in terms of ¢, & and 7 is [p, @] + £ ® dy = 0, where [, ¢] is the
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Nijenhuis torsion of ¢. Finally the fundamental 2-form @ is defined by @(X,Y)

An almost contact metric structure (o, &, 7, g) is said to be cosymplectic, if
it is normal and both @ and 5 are closed {1]. (Our notion of a cosymplectic
manifold differs from the one given by P. Libermann [9].) The structure is
said to be nearly cosymplectic if ¢ is Killing, i.e., if Fxp)Y 4+ (Fyp)X = 0,
where 7 denotes the Riemannian connexion of g. The structure is said to be
closely cosymplectic if ¢ is Killing and 7 is closed.

Proposition 2.1. On a nearly cosymplectic manifold the vector field & is
Killing.

Proof. It suffices to show that g(Vy&,X) = 0 for X belonging to an
orthonormal basis. Clearly g(F.£, &) = 0, so we may assume that X is orthog-
onal to &. Thus

8V 5§, X) = gloV x5, 0X) = —g((Vx0)§, pX) = g((V . 0)X, ¢X)
= —L(sg(SDXa SDX) - Sg(Xa X)) = O .

Remark. (1) From Proposition 2.1 it is clear that on a closely cosym-
plectic manifold we have Vyy = 0.

(2) If an almost contact metric structure is normal and Fyp = 0, then it
is cosymplectic ; conversely on a cosymplectic manifold V¢ = 0, [1].

(3) Since £ is parallel on a closely cosymplectic manifold, it is clear that
(F xp)6 = 0, from which, since ¢ is Killing, V.o = 0.

A plane section of the tangent space MZ%*! at m e M***! is called a g-section
if it is determined by a vector X orthogonal to & such that {X, ¢X} is an ortho-
normal pair spanning the section. The sectional curvature K(X, ¢X) is called
a g-sectional curvature [13].

Given two g-sections determined, say by unit vectors X and Y, we define
the g-bisectional curvature B(X,Y) by

B(X,Y) = gRy,xY, oY),

where Ry denotes the curvature transformation of /.

A local orthonormal basis of the form {&, X, X;« = ¢X;}, i=1,---,n on
an almost contact manifold M***! is called a p-basis. It is well known that such
a basis always exists. Let {5, »;, v} be the dual basis. A 2-form « is said to
be of tridegree (1,1,0) if « satisfies (X, ¢Y) + a(pX,Y) = 0. For a more
general discussion of p-forms of tridegree (2, #,v), 2 4+ # + v = p on almost
contact manifolds see [12]. We denote by H(M*"*') the space of harmonic
2-forms on M***! of tridegree (1,1, 0).

3. Closely cosymplectic manifolds

Lemma 3.1. On a closely cosymplectic marnifold we have
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H(ngo)YHZ = g(RXYX, Y) —- g(RXY@X, SDY) .

The proof is a long but straightforward computation similar to the proof
of the corresponding result on nearly Kihler manifolds [6].
Corollary 3.2. On a closely cosymplectic manifold

gRxyX,Y) = g(R,x,v90X,0Y) .

Corcllary 3.3. On a closely cosymplectic manifold g(R.z&,X) = 0; in
particular the sectional curvatures of plane sections containing & vanish.

This last corollary generalizes the result for cosymplectic manifolds [1].

Lemma 3.4 [11]. Let o be a 2-form on an almost contact manifold satisfy-
ing X, oY) + aleX,Y) = 0. Then for any m e M*™**, there exists a p-basis
of M¥+1 such that a;x = a(X;, X,») are the only nonzero components of a.

Proof. For X orthogonal to & we have

a(é, X) = —alé, ¢’ X) = alpt,9Y) = 0.

Now let S(X,Y) = a(pX,Y). Then S(X,Y) = S(Y,X) and S(pX, oY) =
S(X,Y), i.e., Sis a symmetric bilinear form invariant under ¢. If X, is an
eigenvector of S orthogonal to &, then so is ¢X,. Thus we can inductively
choose a g-basis {£, X;, X, = ¢X,} such that the only nonvanishing components
of S are of the form S;; = S, = @ye;-

Theorem 3.5. Let M*"** be a compact closely cosymplectic manifold having
nonnegative g-bisectional curvature and satisfying K(X,Y) + K(X,0Y) > 0
for linearly independant X, Y, X, oY orthogonal to &. Then M***! is cosym-
plectic or not cosymplectic according as dim H*(M***") = 1 or 0.

Proof. Let « be a 2-form of tridegree (1, 1,0). Then by Lemma 3.4 there
exists a g-basis such that the only nonzero components of « are «;. =
(X ;, X ;). Thususing Lemma 3.1 we have for the Bochner-Lichnerowicz form:

F(a) = R,a" e, , —P—1R

OTIIRNS Sy
Ageenip 5 i @

23-eeip
=2 ; (R“*jj*(aii* — ajj*)z + 2 [:‘(VngD)XJHZ (a‘f{* -+ ai-j*)) ’
<7

where «,4,--- range over 1,.--,2n + 1. Now as R;.;» >0, we have
F(a) > 0; hence if « is harmonic, then F(a) = O giving

(* ) Rii*jj*(a“-* —_ ajj*)z + 2 ”(VX,,(/))XJ”Z ((X‘fit + a"}j-«) = 0 .

If now M?**** is not cosymplectic, it is clear that I, ¢ = O for some /, and
one can then check that (F x,¢)X; # O for some j. Thus «;;» = 0 and a;; = 0.
But if (Fyp)X; =0, then by Lemma 3.1, Rz = Rigsr + Ripgs > 0
giving gz = ;. Thus @ = 0 and we have dim H"(M***?) = 0.
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In the cosymplectic case, the fundamental 2-form @ ¢ H*(M?***1), so that
dim H"(M***Y) > 1. Therefore, if « € H*(M?***), then by a decomposition
theorem of [3], « = 5 + @, where >; ((wmc(w))8 = 0 and f is a function.
Thus 3] 8,;» = 0, and by equation (x) we have 3;;x = 8, giving 8 = 0. Hence
a = f@, and dim H*(M*"*1) = 1.

4. Fibration of closely cosymplectic manifolds

Let M**** be a compact almost contact metric manifold on which & is regular,
i.e., every point m ¢ M***! has a neighborhood through which the integral
curve of & through m passes only once. Since M*"*! is compact, the integral
curves of & are homeomorphic to circles. If now & is parallel, then its integral
curves are geodesics, and it follows from a result of Hermann [8] that M***! is
a principal circle bundle over an even-dimensional manifold X**(§! —> M***!
— K?7),

Theorem 4.1. Let M*™*' be a compact almost contact metric manifold on
which & is regular. If M**** s closely cosymplectic (respectively cosymplectic),
then K*" is nearly Kihler (respectively Kdihler).

Proof. As M*"*!is closely cosymplectic, & is parallel and we have the fibra-
tion §' —— M***! —» K**, Again since ¢ is parallel and V.o = 0, we have

(L)X =VpX =V 26—~ oVX + V6 =F0)X=0.

Thus ¢ is projectable, and we define J on K** by JX = z07X, where # denotes
the horizontal lift with respect to the Riemannian connexion on M®**!. It is
easy to see that J? = —7J on K?*. Now as & is also Killing, the metric g is
projectable to a metric g’ on K**, i.e., g(X,Y)on = g(ZX,zY). Letting I’
denote the Riemannian connexion on K**, by a direct computation we obtain
VDY = 7. (Vzzp)7Y, from which the result follows.

Theorem 4.2. Let $* > M+ = K pe the above fibration with M*"*?
closely cosymplectic. If M*™*' has positive g-sectional curvature, then M*™*!
is the product space K** X S'.

Proof. Since » is harmonic on M?***!, we have H'(M*"*!, Z) + 0. Secondly,
by a direct computation positive p-sectional curvature on M***! implies positive
holomorphic sectional curvature on K**, and hence r,(K**) = 0 by a result of
Gray [5]. We claim a principal circle bundle §' — M — K with 7,(K) = 0 and
H'(M) = 0 is necessarily trivial. Let x be a base point of A, and S the fibre
over x. Then the sequence

s H(M, S) — H\M) —— HY(gL) —> HXM,S) —> - --

is exact. First note that H'(S) =~ Z. Now by the universal coefficient theorem
H'(M) is a free abelian group, and H'(M, S%) ~ free (M, $%) =~ free H,(M, S3)
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=~ free H,(K) = 0 where the identification of H,(M, S.) and H(K) is made by
the Serre sequence of the fibration (see for example, Mosher and Tangora [10]).
Hence ¢* is a nontrivial monomorphism. Moreover torsion H*(M, S%.) =~ torsion
H(M,S.) =~ torsion H(K) = 0. Thus (* is an isomorphism, and hence the
characteristic class of the bundle is zero.

S. Examples

It is well known that S° carries a nearly Kihler structure, so let J denote
such an almost complex structure on S$° and let § be a coordinate function on
S'. On $* x §* define ¢, &, 7 by

d d
X,_)=JX,0, =2 y=dg,
5"( 25) = 0%.0 a7

where X is tangent to S°. Then as J is not parallel on S° (i.e., S°is not Kdhlerian),
Vo £ 0 with respect to the product metric. However it is easy to check that
the structure defined on S$° x $* is closely cosymplectic.

On the other hand, Gray [6] showed that every 4-dimensional nearly
Kiéhler manifold is Kahlerian. We now give the corresponding result for closely
cosymplectic manifolds.

Theorem 5.1. Every 5-dimensional closely cosymplectic manifold is cosym-
plectic.

Proof.  As the manifold is closely cosymplectic, a direct computation shows
that (Fx0)Y = oV y0)0Y. Now let {£, X, 0X,, X,, ¢X,} be a ¢-basis. Then
computing F¢ on this basis we obtain V¢ = 0 and hence that the manifold is
cosymplectic.

In [2] one of the authors showed that besides its usual normal contact metric
structure, $° carries a nearly cosymplectic structure which is not cosymplectic.
Consider $° as a totally geodesic hypersurface of S°; then the nearly Kéhler
structure induces an almost contact metric structure (g, &,7,g) with ¢ and
hence 7 Killing. In view of Theorem 5.1 this nearly cosymplectic structure is not
closely cosymplectic.

Moreover this almost constact structure on S° is also not contact as the fol-
lowing theorem shows.

Theorem 5.2. There are no nearly cosymplectic structures which are
contact metric structures.

Proof. Let M***! be a nearly cosymplectic manifold, and suppose that its
(almost) contact form 7 is a contact structure (i.e., 5 A (dy)™ = 0 everywhere).
Since the structure is contact and ¢ is Killing, M***!is K-contact and —pX =
P & Now on a K-contact manifold the sectional curvature of a plane section
containing ¢ is equal to 1, [7]. Thus if X is a unit vector orthogonal to &, then
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—1=gWFz& —VilV.e — Viexi> X)
= —g(VESDX - §0[E:X],X) = —g((VAD)X + SDVXSJX)
= g((Vx0)&, X) + g(¢’X, X) = g((Fx9)§, X) — 1.

Therefore

and hence X = 0, a contradiction.
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