ALMOST CONTACT MANIFOLDS WITH KILLING STRUCTURES TENSORS. II

D. E. BLAIR & D. K. SHOWERS

1. Introduction

Almost contact manifolds with Killing structure tensors were defined in [2] as nearly cosymplectic manifolds, and it was shown normal nearly cosymplectic manifolds are cosymplectic (see also [4]). In this note we study a nearly cosymplectic structure (φ, ξ, η, g) on a manifold M^{2n+1} with η closed primarily from the topological viewpoint, and extend some of Gray's results for nearly Kähler manifolds [5] to this case. In particular on a compact manifold satisfying some curvature condition we are able to distinguish between the cosymplectic and non-cosymplectic cases. In addition, we show that if ξ is regular, M^{2n+1} is a principal circle bundle $S^1 \to M^{2n+1} \to K^{2n}$ over a nearly Kähler manifold K^{2n} , and moreover if M^{2n+1} has positive φ -sectional curvature, then M^{2n+1} is the product $K^{2n} \times S^1$.

2. Almost contact structures

A (2n+1)-dimensional C^{∞} manifold M^{2n+1} is said to have an almost contact structure if there exist on M^{2n+1} a tensor field φ of type (1,1), a vector field ξ and a 1-form η satisfying

$$\eta(\xi) = 1, \, \varphi \xi = 0, \, \eta \circ \varphi = 0, \, \varphi^2 = -I + \xi \otimes \eta,$$

Moreover, there exists for such a structure a Riemannian metric g such that

$$\eta(X) = g(\xi,X) \;, \qquad g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y) \;,$$

where X and Y are vector fields on M^{2n+1} (see e.g., [14]). Now define on $M^{2n+1} \times R$ an almost complex structure J by

$$J\!\!\left(X, f\!\!-\!\!\frac{d}{dt}\right) = \left(\varphi X - f\xi, \, \eta(X) \!\!-\!\!\frac{d}{dt}\right),$$

where f is a C^{∞} function on $M^{2n+1} \times R$, [15]. If this almost complex structure is integrable, we say that the almost contact structure is *normal*; the condition for normality in terms of φ , ξ and η is $[\varphi, \varphi] + \xi \otimes d\eta = 0$, where $[\varphi, \varphi]$ is the

Communicated by K. Yano, June 29, 1973.

Nijenhuis torsion of φ . Finally the fundamental 2-form Φ is defined by $\Phi(X, Y) = g(X, \varphi Y)$.

An almost contact metric structure (φ, ξ, η, g) is said to be *cosymplectic*, if it is normal and both Φ and η are closed [1]. (Our notion of a cosymplectic manifold differs from the one given by P. Libermann [9].) The structure is said to be *nearly cosymplectic* if φ is Killing, i.e., if $(\mathcal{V}_X \varphi) Y + (\mathcal{V}_Y \varphi) X = 0$, where \mathcal{V} denotes the Riemannian connexion of g. The structure is said to be *closely cosymplectic* if φ is Killing and η is closed.

Proposition 2.1. On a nearly cosymplectic manifold the vector field ξ is Killing.

Proof. It suffices to show that $g(\mathcal{V}_X \xi, X) = 0$ for X belonging to an orthonormal basis. Clearly $g(\mathcal{V}_{\xi} \xi, \xi) = 0$, so we may assume that X is orthogonal to ξ . Thus

$$\begin{split} g(\overline{V}_X\xi,X) &= g(\varphi\overline{V}_X\xi,\varphi X) = -g((\overline{V}_X\varphi)\xi,\varphi X) = g((\overline{V}_\xi\varphi)X,\varphi X) \\ &= \tfrac{1}{2}(\xi g(\varphi X,\varphi X) - \xi g(X,X)) = 0 \ . \end{split}$$

Remark. (1) From Proposition 2.1 it is clear that on a closely cosymplectic manifold we have $\nabla_x \eta = 0$.

- (2) If an almost contact metric structure is normal and $\nabla_x \varphi = 0$, then it is cosymplectic; conversely on a cosymplectic manifold $\nabla_x \varphi = 0$, [1].
- (3) Since ξ is parallel on a closely cosymplectic manifold, it is clear that $(\nabla_x \varphi)\xi = 0$, from which, since φ is Killing, $\nabla_\xi \varphi = 0$.

A plane section of the tangent space M_m^{2n+1} at $m \in M^{2n+1}$ is called a φ -section if it is determined by a vector X orthogonal to ξ such that $\{X, \varphi X\}$ is an orthonormal pair spanning the section. The sectional curvature $K(X, \varphi X)$ is called a φ -sectional curvature [13].

Given two φ -sections determined, say by unit vectors X and Y, we define the φ -bisectional curvature B(X,Y) by

$$B(X, Y) = g(R_{X \varphi X} Y, \varphi Y) ,$$

where R_{XY} denotes the curvature transformation of \overline{V} .

A local orthonormal basis of the form $\{\xi, X_i, X_{i^*} = \varphi X_i\}$, $i = 1, \dots, n$ on an almost contact manifold M^{2n+1} is called a φ -basis. It is well known that such a basis always exists. Let $\{\eta, \omega_i, \omega_{i^*}\}$ be the dual basis. A 2-form α is said to be of tridegree (1, 1, 0) if α satisfies $\alpha(X, \varphi Y) + \alpha(\varphi X, Y) = 0$. For a more general discussion of p-forms of tridegree (λ, μ, ν) , $\lambda + \mu + \nu = p$ on almost contact manifolds see [12]. We denote by $H^{110}(M^{2n+1})$ the space of harmonic 2-forms on M^{2n+1} of tridegree (1, 1, 0).

3. Closely cosymplectic manifolds

Lemma 3.1. On a closely cosymplectic manifold we have

$$||(\nabla_X \varphi)Y||^2 = g(R_{XY}X, Y) - g(R_{XY}\varphi X, \varphi Y).$$

The proof is a long but straightforward computation similar to the proof of the corresponding result on nearly Kähler manifolds [6].

Corollary 3.2. On a closely cosymplectic manifold

$$g(R_{XY}X, Y) = g(R_{\varphi X \varphi Y} \varphi X, \varphi Y)$$
.

Corollary 3.3. On a closely cosymplectic manifold $g(R_{\xi X}\xi, X) = 0$; in particular the sectional curvatures of plane sections containing ξ vanish.

This last corollary generalizes the result for cosymplectic manifolds [1].

Lemma 3.4 [11]. Let α be a 2-form on an almost contact manifold satisfying $\alpha(X, \varphi Y) + \alpha(\varphi X, Y) = 0$. Then for any $m \in M^{2n+1}$, there exists a φ -basis of M_{n}^{2n+1} such that $\alpha_{ii^*} = \alpha(X_i, X_{i^*})$ are the only nonzero components of α .

Proof. For X orthogonal to ξ we have

$$\alpha(\xi, X) = -\alpha(\xi, \varphi^2 X) = \alpha(\varphi \xi, \varphi Y) = 0.$$

Now let $S(X,Y) = \alpha(\varphi X,Y)$. Then S(X,Y) = S(Y,X) and $S(\varphi X,\varphi Y) = S(X,Y)$, i.e., S is a symmetric bilinear form invariant under φ . If X_1 is an eigenvector of S orthogonal to ξ , then so is φX_1 . Thus we can inductively choose a φ -basis $\{\xi, X_i, X_{i*} = \varphi X_i\}$ such that the only nonvanishing components of S are of the form $S_{ii} = S_{i*i*} = \alpha_{i*i}$.

Theorem 3.5. Let M^{2n+1} be a compact closely cosymplectic manifold having nonnegative φ -bisectional curvature and satisfying $K(X,Y)+K(X,\varphi Y)>0$ for linearly independent $X,Y,\varphi X,\varphi Y$ orthogonal to ξ . Then M^{2n+1} is cosymplectic or not cosymplectic according as dim $H^{110}(M^{2n+1})=1$ or 0.

Proof. Let α be a 2-form of tridegree (1, 1, 0). Then by Lemma 3.4 there exists a φ -basis such that the only nonzero components of α are $\alpha_{ii*} = \alpha(X_i, \varphi X_i)$. Thus using Lemma 3.1 we have for the Bochner-Lichnerowicz form:

$$\begin{split} F(\alpha) &= R_{\mu\nu} \alpha^{\mu\lambda_2 \cdots \lambda_p} \alpha^{\nu}_{\lambda_2 \cdots \lambda_p} - \frac{p-1}{2} R_{\kappa\lambda\mu\nu} \alpha^{\kappa\lambda\lambda_3 \cdots \lambda_p} \alpha^{\mu\nu}_{\lambda_3 \cdots \lambda_p} \\ &= 2 \sum_{i < j} \left(R_{ii*jj*} (\alpha_{ii*} - \alpha_{jj*})^2 + 2 \| (V_{X_i} \varphi) X_j \|^2 (\alpha_{ii*}^2 + \alpha_{jj*}^2) \right) \,, \end{split}$$

where κ, λ, \cdots range over $1, \cdots, 2n+1$. Now as $R_{ii*jj*} \ge 0$, we have $F(\alpha) \ge 0$; hence if α is harmonic, then $F(\alpha) = 0$ giving

$$(*) R_{ii*jj*}(\alpha_{ii*} - \alpha_{jj*})^2 + 2 \| (\nabla_{X_i} \varphi) X_j \|^2 (\alpha_{ii*}^2 + \alpha_{jj*}^2) = 0.$$

If now M^{2n+1} is not cosymplectic, it is clear that $\nabla_{X_i}\varphi \neq 0$ for some i, and one can then check that $(\nabla_{X_i}\varphi)X_j \neq 0$ for some j. Thus $\alpha_{ii^*}=0$ and $\alpha_{jj^*}=0$. But if $(\nabla_{X_i}\varphi)X_k=0$, then by Lemma 3.1, $R_{ii^*kk^*}=R_{ikik}+R_{ik^*ik^*}>0$ giving $\alpha_{kk^*}=\alpha_{ii^*}$. Thus $\alpha=0$ and we have $\dim H^{110}(M^{2n+1})=0$.

In the cosymplectic case, the fundamental 2-form $\Phi \in H^{110}(M^{2n+1})$, so that $\dim H^{110}(M^{2n+1}) \geq 1$. Therefore, if $\alpha \in H^{110}(M^{2n+1})$, then by a decomposition theorem of [3], $\alpha = \beta + f\Phi$, where $\sum_i (\iota(\omega_{i*})\iota(\omega_i))\beta = 0$ and f is a function. Thus $\sum \beta_{ii*} = 0$, and by equation (*) we have $\beta_{ii*} = \beta_{jj*}$ giving $\beta = 0$. Hence $\alpha = f\Phi$, and $\dim H^{110}(M^{2n+1}) = 1$.

4. Fibration of closely cosymplectic manifolds

Let M^{2n+1} be a compact almost contact metric manifold on which ξ is regular, i.e., every point $m \in M^{2n+1}$ has a neighborhood through which the integral curve of ξ through m passes only once. Since M^{2n+1} is compact, the integral curves of ξ are homeomorphic to circles. If now ξ is parallel, then its integral curves are geodesics, and it follows from a result of Hermann [8] that M^{2n+1} is a principal circle bundle over an even-dimensional manifold $K^{2n}(S^1 \longrightarrow M^{2n+1} \longrightarrow K^{2n})$.

Theorem 4.1. Let M^{2n+1} be a compact almost contact metric manifold on which ξ is regular. If M^{2n+1} is closely cosymplectic (respectively cosymplectic), then K^{2n} is nearly Kähler (respectively Kähler).

Proof. As M^{2n+1} is closely cosymplectic, ξ is parallel and we have the fibration $S^1 \longrightarrow M^{2n+1} \longrightarrow K^{2n}$. Again since ξ is parallel and $V_{\xi} \varphi = 0$, we have

$$(\mathcal{L}_{\varepsilon}\varphi)X = \nabla_{\varepsilon}\varphi X - \nabla_{\varphi X}\xi - \varphi \nabla_{\varepsilon}X + \varphi \nabla_{X}\xi = (\nabla_{\varepsilon}\varphi)X = 0.$$

Thus φ is projectable, and we define J on K^{2n} by $JX = \pi_* \varphi \tilde{\pi} X$, where $\tilde{\pi}$ denotes the horizontal lift with respect to the Riemannian connexion on M^{2n+1} . It is easy to see that $J^2 = -I$ on K^{2n} . Now as ξ is also Killing, the metric g is projectable to a metric g' on K^{2n} , i.e., $g'(X,Y) \circ \pi = g(\tilde{\pi} X, \tilde{\pi} Y)$. Letting V' denote the Riemannian connexion on K^{2n} , by a direct computation we obtain $(V'_XJ)Y = \pi_*(V_{\tilde{\pi} X}\varphi)\tilde{\pi} Y$, from which the result follows.

Theorem 4.2. Let $S^1 \longrightarrow M^{2n+1} \xrightarrow{\pi} K^{2n}$ be the above fibration with M^{2n+1} closely cosymplectic. If M^{2n+1} has positive φ -sectional curvature, then M^{2n+1} is the product space $K^{2n} \times S^1$.

Proof. Since η is harmonic on M^{2n+1} , we have $H^1(M^{2n+1}, \mathbb{Z}) \neq 0$. Secondly, by a direct computation positive φ -sectional curvature on M^{2n+1} implies positive holomorphic sectional curvature on K^{2n} , and hence $\pi_1(K^{2n}) = 0$ by a result of Gray [5]. We claim a principal circle bundle $S^1 \to M \to K$ with $\pi_1(K) = 0$ and $H^1(M) \neq 0$ is necessarily trivial. Let x be a base point of M, and S^1_x the fibre over x. Then the sequence

$$\cdots \longrightarrow H^{1}(M, S_{x}^{1}) \longrightarrow H^{1}(M) \xrightarrow{\iota^{*}} H^{1}(S_{x}^{1}) \longrightarrow H^{2}(M, S_{x}^{1}) \longrightarrow \cdots$$

is exact. First note that $H^1(S_x^1) \approx Z$. Now by the universal coefficient theorem $H^1(M)$ is a free abelian group, and $H^1(M, S_x^1) \approx \text{free } H^1(M, S_x^1) \approx \text{free } H_1(M, S_x^1)$

 \approx free $H_1(K)=0$ where the identification of $H_1(M,S_x^1)$ and $H_1(K)$ is made by the Serre sequence of the fibration (see for example, Mosher and Tangora [10]). Hence ι^* is a nontrivial monomorphism. Moreover torsion $H^2(M,S_x^1)\approx$ torsion $H_1(M,S_x^1)\approx$ torsion $H_1(K)=0$. Thus ι^* is an isomorphism, and hence the characteristic class of the bundle is zero.

5. Examples

It is well known that S^6 carries a nearly Kähler structure, so let J denote such an almost complex structure on S^6 and let θ be a coordinate function on S^1 . On $S^6 \times S^1$ define φ, ξ, η by

$$\varphi\Bigl(X,f\frac{d}{d\theta}\Bigr)=(JX,0)\ ,\quad \xi=\frac{d}{d\theta}\ ,\quad \eta=d\theta\ ,$$

where X is tangent to S^6 . Then as J is not parallel on S^6 (i.e., S^6 is not Kählerian), $V\varphi \neq 0$ with respect to the product metric. However it is easy to check that the structure defined on $S^6 \times S^1$ is closely cosymplectic.

On the other hand, Gray [6] showed that every 4-dimensional nearly Kähler manifold is Kählerian. We now give the corresponding result for closely cosymplectic manifolds.

Theorem 5.1. Every 5-dimensional closely cosymplectic manifold is cosymplectic.

Proof. As the manifold is closely cosymplectic, a direct computation shows that $(\nabla_X \varphi)Y = \varphi(\nabla_X \varphi)\varphi Y$. Now let $\{\xi, X_1, \varphi X_1, X_2, \varphi X_2\}$ be a φ -basis. Then computing $\nabla \varphi$ on this basis we obtain $\nabla \varphi = 0$ and hence that the manifold is cosymplectic.

In [2] one of the authors showed that besides its usual normal contact metric structure, S^5 carries a nearly cosymplectic structure which is not cosymplectic. Consider S^5 as a totally geodesic hypersurface of S^6 ; then the nearly Kähler structure induces an almost contact metric structure (φ, ξ, η, g) with φ and hence η Killing. In view of Theorem 5.1 this nearly cosymplectic structure is not closely cosymplectic.

Moreover this almost constact structure on S^5 is also not contact as the following theorem shows.

Theorem 5.2. There are no nearly cosymplectic structures which are contact metric structures.

Proof. Let M^{2n+1} be a nearly cosymplectic manifold, and suppose that its (almost) contact form η is a contact structure (i.e., $\eta \wedge (d\eta)^n \neq 0$ everywhere). Since the structure is contact and ξ is Killing, M^{2n+1} is K-contact and $-\varphi X = \nabla_X \xi$. Now on a K-contact manifold the sectional curvature of a plane section containing ξ is equal to 1, [7]. Thus if X is a unit vector orthogonal to ξ , then

$$\begin{aligned}
-1 &= g(\overline{V}_{\xi}\overline{V}_{X}\xi - \overline{V}_{X}\overline{V}_{\xi}\xi - \overline{V}_{[\xi,X]}\xi, X) \\
&= -g(\overline{V}_{\xi}\varphi X - \varphi[\xi,X], X) = -g((\overline{V}_{\xi}\varphi)X + \varphi \overline{V}_{X}\xi, X) \\
&= g((\overline{V}_{X}\varphi)\xi, X) + g(\varphi^{2}X, X) = g((\overline{V}_{X}\varphi)\xi, X) - 1.
\end{aligned}$$

Therefore

$$0 = g((\nabla_X \varphi)\xi, X) = -g(\varphi \nabla_X \xi, X) = -g(\varphi^2 X, X) = g(X, X) ,$$

and hence X = 0, a contradiction.

References

- [1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967) 331-345.
- [2] —, Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971) 285-292.
- [3] D. E. Blair & S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1 (1967) 347-354.
- [4] D. E. Blair & K. Yano, Affine almost contact manifolds and f-manifolds with affine Killing structure tensors, Kōdai Math. Sem. Rep. 23 (1971) 473-479.
- [5] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283-309.
- [6] —, Almost complex submanifolds of the six-sphere, Proc. Amer. Math. Soc. 20 (1969) 277-279.
- [7] Y. Hatakeyama, Y. Ogawa & S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J. 15 (1963) 42-48.
- [8] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960) 236-242.
- [9] P. Libermann, Sur les automorphisms infinitésimaux des structures symplectiques et des structures de contact, Colloq. Géométrie Différentielle Globale (Bruxelles, 1958), Louvain, 1959, 37-59.
- [10] P. Mosher & M. Tangora, Cohomology operations and applications in homotopy theory, Harper and Row, New York, 1968.
- [11] E. M. Moskal, Contact manifolds of positive curvature, Thesis, University of Illinois, 1966.
- [12] ----, On the tridegree of forms on f-manifolds with applications, to appear.
- [13] K. Ogiue, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Ködai Math. Sem. Rep. 16 (1964) 223-232.
- [14] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tôhoku Math. J. 12 (1960) 459-476.
- [15] S. Sasaki & Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure. II, Tôhoku Math. J. 13 (1961) 281-294.

MICHIGAN STATE UNIVERSITY